
Sidewalk-Rust-Flutter
IoT プロトタイプ構築ガイド

第1.0版
2026.01.01

af://h1-1

目次

1 プロジェクト概要
1.1 システム構成図

1.2 ハードウェア要件 (BOM)

2 データ構造設計 (Payload Protocol)

3 実装フェーズ
3.1 Phase 1: AWS クラウド基盤構築 (Rust Backend)
3.2 Phase 2: エッジデバイス開発 (XIAO nRF52840)

3.3 Phase 3: ゲートウェイ構築 (Android)
3.4 Phase 4: 可視化アプリ開発 (Flutter)

4 開発ロードマップとチェックリスト
5 Tips & トラブルシューティング

1 プロジェクト概要
本プロジェクトは、Amazon Sidewalk の広域ネットワーク特性を模倣した BLE 通信環境を構築し、温度データをクラウドで収集・可視化するシ
ステムです。

1.1 システム構成図

Mobile App (Flutter)

Cloud (Rust)Gateway (Kotlin/Java)Edge Device (Rust)

I2C BLE Adv (19byte) Sidewalk Mobile SDK Rule Engine Decode & Put

REST AP

Query

ENV III Unit XIAO nRF52840 Android Gateway AWS IoT Core Lambda Function

DynamoDB

Flutter App API Gateway Lambda Function

af://h2-2
af://h3-3

1.2 ハードウェア要件 (BOM)

1. MCU: Seeed Studio XIAO nRF52840 (Sense または Standard)
2. Base: Seeed Studio XIAO Expansion Base

3. Sensor: M5Stack ENV III Unit (SHT30 + QMP6988)
4. Gateway: Android スマートフォン (Amazon Sidewalk Mobile SDK 対応)
5. PC: Rust 開発環境 (VS Code 推奨)

af://h3-4

2 データ構造設計 (Payload Protocol)
LoRa (Sub-GHz) のペイロード制限（最大19byte）に適合するよう、 postcard クレートを用い
てバイナリ化します。

データレイアウト (Total: 11 bytes)

Byte Offset Field Type (Rust) Description

0-3 device_id u32 デバイス固有ID

4-5 temperature i16 温度 (℃) × 100

6 humidity u8 湿度 (%)

7-10 pressure u32 気圧 (Pa)

残りの8byteは、将来的にタイムスタンプやステータスフラグに使用可能。

af://h2-5

3 実装フェーズ

3.1 Phase 1: AWS クラウド基盤構築 (Rust Backend)

データを受け皿を先に作ります。

手順:

1. DynamoDB テーブル作成:
Table Name: SidewalkTemperatures
Partition Key: device_id (String)

Sort Key: timestamp (Number)

2. Rust Lambda (Receiver) 実装:
Sidewalk から届く Base64 エンコードされたバイナリをデコードし、DBへ保存します。

// Cargo.toml

// dependencies: lambda_runtime, serde, postcard, aws-sdk-dynamodb, base64

#[derive(Deserialize, Serialize)]

struct Payload {

 device_id: u32,

 temperature: i16, // real_temp = temperature / 100.0

 humidity: u8,

 pressure: u32,

}

async fn function_handler(event: LambdaEvent<IoTEvent>) -> Result<(), Error> {

 let payload_bytes = decode(&event.payload.data)?;

 // 19byte以下のバイナリを構造体に復元

 let data: Payload = from_bytes(&payload_bytes)?;

 // DynamoDBへ保存 (aws-sdk-dynamodb使用)

 client.put_item()

 .table_name("SidewalkTemperatures")

 .item("device_id", AttributeValue::S(data.device_id.to_string()))

 .item("timestamp", AttributeValue::N(Utc::now().timestamp().to_string()))

 .item("temperature", AttributeValue::N((data.temperature as f64 / 100.0).to_string

()))

 .send().await?;

base64::

postcard::

af://h2-6
af://h3-7

3.2 Phase 2: エッジデバイス開発 (XIAO nRF52840)

センサー値を読み取り、BLEアドバタイズパケットに乗せます。

I2C 接続情報:

Rust 実装のポイント:

embassy-nrf (非同期ランタイム) を使用し、省電力動作を実装します。

 Ok(())

}

SDA: Pin D4
SCL: Pin D5

ENV III Address: 0x44 (SHT30), 0x70 (QMP6988)

// main.rs (抜粋)

#[embassy_executor::main]

async fn main(spawner: Spawner) {

 let p = init(Default::default());

 // I2C 初期化 (Expansion Baseの仕様に合わせる)

 let config = Config::default();

 let i2c = Twim::new(p.TWIM0, p.P1_08, p.P0_07, config); // ピン番号は要確認(XIAO D4/

D5)

 // センサー初期化

 let mut sht30 = Sht3x::new(i2c, Address::Low);

 loop {

 // 1. 計測

 let measurement = sht30.measure().await.unwrap();

 let temp_int = (measurement.temperature.as_degrees_celsius() * 100.0) as i16;

 // 2. パッキング (postcard)

 let payload = Payload {

 device_id: 1001,

 temperature: temp_int,

 humidity: measurement.humidity.as_percent() as u8,

embassy_nrf::

twim::

twim::

sht3x:: sht3x::

af://h3-8

3.3 Phase 3: ゲートウェイ構築 (Android)

スマートフォンをブリッジとして機能させます。

手順:

Note: 開発段階では、単なるBLEスキャナーアプリを作り、受信データを「AWS IoT Coreの
HTTPエンドポイント」にPOSTする簡易実装でも代用可能です（Sidewalk SDKの認証周り
が複雑なため）。

3.4 Phase 4: 可視化アプリ開発 (Flutter)

ユーザーがデータを見るためのダッシュボードです。

 pressure: 0, // 今回は省略

 };

 let mut buf = [0u8; 19];

 let bytes = to_slice(&payload, &mut buf).unwrap();

 // 3. 送信 (BLE Advertise)

 // Sidewalk Mobile SDKが検知できる特定のUUIDまたはManufacturer Dataに設定

 let mut adv_data = LegacyAdvertisement::new();

 adv_data.manufacturer_specific_data(0xFFFF, bytes); // テスト用ID

 // アドバタイズ実行 (例えば5秒間)

 advertiser.advertise(&adv_data).await;

 // 4. Deep Sleep (例えば10分)

 Timer::after(Duration::from_secs(600)).await;

 }

}

postcard::

1. Sidewalk Mobile SDK 導入:
Amazon Developer Portal から SDK を入手し、Android Studio プロジェクトにインポー
ト。

2. ブリッジ機能の実装:
SidewalkManager を初期化。
Bluetooth スキャンを実行し、XIAO からのパケットをキャッチ。
SDK のメソッド sendData() を使用して、受信したペイロードをそのまま AWS へ転
送。

af://h3-9
af://h3-10

技術スタック:

実装フロー:

State Management: Riverpod

Chart: fl_chart
Networking: dio or http

1. API クライアント:

Phase 1 で作成したデータを読み出す Lambda (API Gateway経由) を叩くリポジトリクラス
を作成。

2. UI 構築:

// Chart Widget 簡易例

LineChart(

 LineChartData(

 lineBarsData: [

 LineChartBarData(

 spots: points.map((e) => FlSpot(e.time, e.temp)).toList(),

 isCurved: true,

 color: Colors.blue,

),

],

 // ...軸の設定など

),

);

4 開発ロードマップとチェックリスト
Rust環境構築: rustup target add thumbv7em-none-eabihf , cargo install probe-rs .

ハードウェアテスト: XIAO + Expansion Base で OLED に "Hello" を表示する。
センサー疎通: Rust で I2C 経由の温度取得を成功させる。
クラウド疎通: テスト用バイナリデータを AWS IoT Core のテスト画面から投げ、DynamoDB
に入ることを確認する。

エンドツーエンド (BLE): デバイス → Android → AWS のパスを通す。
アプリ表示: Flutter アプリでグラフが描画されることを確認する。

af://h2-11

5 Tips & トラブルシューティング
XIAO nRF52840 ピン配置: Rust の bsp (Board Support Package) クレートを使う場合、 D
4 , D5 という名前でアクセスできるか、 P0_07 などの生ピン番号が必要かを確認してくださ
い。XIAO の回路図と照らし合わせるのが確実です。

エンディアン: postcard はリトルエンディアンを使用します。デバッグ時にバイナリを手動
で読む際は注意してください。

権限: Android アプリには BLUETOOTH_SCAN , BLUETOOTH_CONNECT , ACCESS_FINE_LOCATION
の権限付与が必要です。

af://h2-12

	Sidewalk-Rust-FlutterIoT プロトタイプ構築ガイド
	1 プロジェクト概要
	1.1 システム構成図
	1.2 ハードウェア要件 (BOM)

	2 データ構造設計 (Payload Protocol)
	3 実装フェーズ
	3.1 Phase 1: AWS クラウド基盤構築 (Rust Backend)
	3.2 Phase 2: エッジデバイス開発 (XIAO nRF52840)
	3.3 Phase 3: ゲートウェイ構築 (Android)
	3.4 Phase 4: 可視化アプリ開発 (Flutter)

	4 開発ロードマップとチェックリスト
	5 Tips & トラブルシューティング

